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A B S T R A C T

This study compares a miniaturized spectrophotometer to benchtop and hand-held Vis-NIR instruments in the
spectral range of 900–1700 nm for prediction of intramuscular fat (IMF) content of freeze-dried ground lamb
meat; and their ability to differentiate fresh lamb meat based on animal age (4 vs 12 months). The performance
of the miniaturized spectrophotometer was not affected by sample temperature equilibration time. Partial Least
Square regression models for IMF showed Rcv2 = 0.86–0.89 and RMSECV = 0.36–0.40 values for all instru-
ments. Day-to-day instrumental variation adversely affected performance of the miniaturized spectrophotometer
(R2

p = 0.27, RMSEP = 1.28). This negative effect was overcome by representing day-to-day variation in the
model. The benchtop spectrophotometer and miniaturized spectrophotometer differentiated lamb meat by an-
imal age. The miniaturized spectrophotometer has potential to be a fast, ultra-compact and cost-effective device
for predicting IMF in freeze-dried ground lamb meat and for age classification of fresh lamb meat.

1. Introduction

Flavor and texture are significant contributors to consumer ac-
ceptability of lamb meat (Craigie et al., 2017; Oltra et al., 2015). In-
tramuscular fat (IMF) is an important quality indicator in lamb due to
its influence on properties such as flavor, juiciness, aroma and tender-
ness. IMF is directly affected by animal background as well as feeding,
which can result in variation in levels of IMF across meat products.
Thus the interest to detect IMF at meat processing plant to enable
classification of meat cuts based on the level of IMF associates to con-
sumer preference (Pannier et al., 2018).

Spectroscopy in the visible and near infrared (Vis-NIR) region has
been widely applied to beef, lamb and pork with the aim for developing
a non-invasive and rapid tool for measuring various properties related
to product quality (Dixit et al., 2017; Holman, Alvarenga, van de Ven, &
Hopkins, 2015; Porep, Kammerer, & Carle, 2015; Prieto, Roehe, Lavín,
Batten, & Andrés, 2009). Hitherto Vis-NIR spectroscopy systems were
expensive, less-portable and accessible by laboratories only. More re-
cently, there has been a growing number of miniaturized, user-friendly,
and cost-effective spectrometers introduced into the market. These in-
struments appeal to a wide range of demographics including scholars

and businesses; thus, motivating performance evaluations of these
spectrometers for assessment of food. A number of studies have been
conducted in order to evaluate the efficacy of these miniaturized
spectrophotometers for detecting food adulteration, classifying food
products as well as quantifying various compositional and quality at-
tributes (Harpreet, Rainer, & Andrew, 2017; Kovacs, Bazar, Darvish,
Nieuwenhuijs, & Hoffmann, 2017; Marques, de Freitas, Pimentel, &
Pasquini, 2015). A miniaturized spectrophotometer covering the spec-
tral range between 900 and 1700 nm (Tellspec Inc., Denmark, www.
tellspec.com) has been tested for meat with respect to adulteration
detection, identification and compositional quantification. The device
was used for differentiating freeze-dried pork and rabbit meat. Ad-
ditionally, the fat content of pork and rabbit meat were also determined
with good accuracy, yielding a Rc2 of 0.93 and 0.98, respectively
(Bazar, Kovacs, Pinter, Darvish, & Hoffman, 2016). In another study,
the device was used to develop multivariate models for differentiating
beef cuts and prediction of aging time based on NIR spectra, where
85.37% of sirloin and tenderloin samples were classified correctly in
independent validation tests. Calibration models on meat aging were
obtained with an accuracy of 1 or 1.5 days for sirloin or tenderloin,
respectively, after omitting initial and final days (Bazar, Kovacs, &
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Hoffmann, 2017).
The current study was aimed at investigating a miniaturized spec-

trophotometer as a compact, mobile, user-friendly, and cost-effective
tool for predicting IMF in freeze dried ground lamb, in comparison to
other benchtop and hand-held instruments. This approach will enable
to assess the ability of the miniaturized spectrophotometer to detect fat
signal and its accuracy in doing so. The study consists of two parts: a)
Evaluation of the impact of sample state (room-temperature-equili-
brated; named as equilibrated and non-equilibrated) on model devel-
opment and b) Evaluation of the performance of a miniaturized spec-
trophotometer to predict IMF in freeze dried ground lamb meat samples
with other NIR instruments. Additionally, the study also aims at eval-
uating the performance of miniaturized and benchtop spectro-
photometers for differentiating lamb meat based on animal age by
utilizing spectral features.

2. Materials and methods

2.1. Sample preparation

2.1.1. Sample preparation: freeze dried ground lamb samples
Lamb meat, devoid of any subcutaneous fat, was minced and frozen

at −18 °C followed by freeze drying for 72 h. A total of 609 samples,
which consisted of previously prepared freeze-dried samples and recent
samples were analyzed. From those, 109 samples were used for the
development of models and other 500 samples were used as an in-
dependent validation data set. All samples were kept frozen at −18 °C
prior to spectral analysis.

2.1.2. Sample preparation: fresh lamb samples
A total of 60 lambs were processed in a commercial processing

plant. The lambs were a composite of different breeds and genders; and
were in 2 age groups i.e. 4 and 12 months old. At 24 h post mortem, the
left Musculus Longissimus thoracis (MLT) was removed from the carcass
for spectral analysis. Half (n = 30) of the lambs were 4 month old
wethers of a composite breed slaughtered at weaning that had been
suckling and grazing on their mother's diet (chicory and red clover
mix). The remaining 30 animals were wethers (n= 15) and cryptorchid
(n = 15) merino lambs that had been grazing a mixed pasture (ryegrass
and white clover mix) and slaughtered at 12 months old. Mean carcass
weight and fat depth were 18.6 ± 0.16 kg, 19.5 ± 0.23 kg and
19.0 ± 0.23 kg, and 8.9 ± 0.44 mm, 4.5 ± 0.62 mm and
4.1 ± 062 mm for weaned lambs, Merino cryptorchid and Merino
wether lambs, respectively. Decisions regarding the animals that were
sent for slaughter were made by the farmer based on criteria to obtain a
target carcass weight of 17–21 kg. Thirty carcasses from weaned lambs,
fifteen from Merino cryptorchid lambs and fifteen from Merino wether
lambs were randomly selected from the slaughter chain from a larger
group of lambs.

2.1.3. IMF analysis
The AOAC approved method (AOAC, 2000) involving gas chroma-

tography (GC) was used for determining IMF content of all freeze-dried
lamb meat samples (n = 609). The IMF content in the freeze dried
powder was converted to IMF% in wet meat sample using a conversion
factor as described in (Craigie et al., 2017). Briefly, a conversion factor
(weight of dried sample − weight of bag and tag) / (weight of wet

Table 1
Specifications and settings of spectrophotometers used in the study.

Spectrophotometer Spectral range Spectral resolution Spectral sampling
(nm)

Sub-scans Probe/lamp Manufacturer

Labspec5000 350-2500 nm 3 nm @700 nm 10 nm @ 1400/
2100 nm,

1 40 • Contact probe

• Light source: Halogen light source,
2900 K, 12–18 VDC, 6.5 W

• Viewed area 20 mm∅

ASD Inc., Boulder, CO,
USA

Labspec4 350-2500 nm 3 nm @700 nm 6 nm @ 1400/
2100 nm

1 40 • Contact probe

• Light source: Halogen light source,
2900 K, 12–18 VDC, 6.5 W.

• Viewed area 20 mm∅

ASD Inc., Boulder, CO,
USA

Trek 350-2500 nm 3 nm @ 700 nm 9.8 nm @
1400 nm 8.1 nm @ 2100 nm

1 50 • Contact device

• Viewed area 10 mm∅
ASD Inc., Boulder, CO,
USA

NIRScan Nano 900–1700 nm 10 nm 0.96–2.6 15 • Contact device

• Light source: two lens-end broadband
tungsten filament lamps, 1.4 W

• Viewed area 2.5 mm∅

Texas instruments Inc.,
Texas, USA

Fig. 1. Spectra; (a) non-equilibrated and equilibrated sample with NIRscan Nano, (b) non-equilibrated and equilibrated sample with Labspec5000 and (c) Comparing
spectra from all spectrophotometers for freeze dried ground lamb meat samples (equilibrated).
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sample − weight of bag and tag) was applied to the weight of the freeze
dried meat to convert from concentration per gram of freeze dried meat
to the concentration of the wet meat. The laboratory error for IMF was
estimated to be 0.20% (Craigie et al., 2017). The IMF% in wet meat
sample were used as reference values to fit the models.

2.2. Spectral analysis

2.2.1. Freeze dried ground lamb samples
Samples were analyzed in two temperature conditions i.e. room-

temperature-equilibrated (named as ‘equilibrated’) and non-equili-
brated in order to evaluate the effect of variation in sample temperature
between storage at −18 °C and room temperature (20 °C). Non-equi-
librated samples were scanned immediately after removal from storage

Table 2
Fitness of equilibrated model for fat prediction fitted with non- equilibrated and equilibrated ground meat lamb samples data.

Instrument Calibration Non-equilibrated Equilibrated

n LV RMSEC Rc2 RMSECV Rcv2 n RMSEP Rp2 n RMSEP Rp2

LabSpec5000 66 5 0.34 0.92 0.40 0.89 43 1.12 0.75 43 1.49 0.83
NIRscan Nano 61 5 0.40 0.89 0.47 0.85 42 0.39 0.83 42 0.38 0.82

Note:
n: number of samples.
LV: Latent Variables.
RMSEC: Root Mean Squared Error of Calibration.
RMSECV: Root Mean Squared Error of Cross-Validation.
Rcv2: Coefficient of determination in cross-validation.
RMSEP: Root Mean Squared Error of Prediction.
Rp2: Coefficient of determination in prediction.

Fig. 2. Prediction plots; (a) Labspec5000 for equilibrated samples, (b) Labspec5000 for non-equilibrated samples (c) NIRscan Nano for equilibrated samples, (d)
NIRscan Nano for non-equilibrated samples. The dashed line represents the reference lines which indicates the expected behavior for the regression lines (the solid
line).

Y. Dixit, et al. Meat Science 162 (2020) 108026

3



(−18 °C) while equilibrated samples were kept at room temperature for
20 min before conducting spectroscopic analysis. Three spectro-
photometers i.e. the Labspec5000, Labspec4, Trek and the NIRscan
Nano were utilized for the analysis (Table 1). Sample scanning was
conducted over a period of 14 days: (a) samples used for calibration

were analyzed over the first 4 days and (b) samples used for validation
were analyzed over the next 10 days. NIRscan Nano was used with
following settings: (a) width: 2.34 nm, (b) digital resolution: 605 nm
and (c) method: hadamard (Pham, Agnew, Craigie, & Reis, 2018).
Further details about NIRscan Nano can be found elsewhere

Fig. 3. Regression coefficient plots; (a) Labspec5000, (b) Labspec4, (c) Trek and (d) NIRscan Nano.

Fig. 4. Variable importance in projection (VIP) scores plot for NIRscan Nano PLS regression model.
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(Anonymous, 2017). Each freeze-dried lamb powder sample filled a
44 mm × 44 mm × 3.6 mm plastic weighing boat (Thermofisher,
USA). The sample surface was flattened out in order to avoid any
fluctuations due to surface undulations. Measurements conducted using
the LabSpec5000 and the LabSpec4 were performed at a distance of
1 mm between the probe window and the sample. The Trek and
NIRscan Nano were operated using contact measurements. All ASD
equipment collected 40 scans that were averaged in to one spectrum;
while for the NIRscan Nano three spectra were acquired at 3 random
locations of the sample surface, in this case each spectrum corresponds
to the average of 15 scans on the same location.

2.2.2. Fresh lamb samples
This experiment involved the evaluation of meat samples harvested

24 h post mortem at the meat processing plant. Samples were analyzed
using the Labspec5000 and NIRscan Nano instruments. Samples from
MLT were cut into 2 cm thick slices and measurements were done on
muscle cross-section, without avoiding marbling. Two measurements
were acquired per sample at random sample locations using each in-
strument. A total of 60 samples were analyzed to establish if samples
could be distinguished based on animal age. Due to time restriction on
sample assessment only Labspec5000 and NIRScan Nano were used for
analysis. The Labspec5000 was chosen as it had been tested in similar
conditions before (Craigie et al., 2017).

2.3. Multivariate data analysis

2.3.1. Data analysis: freeze dried ground lamb samples
The raw spectral data was imported into The Unscrambler X sta-

tistical software (The Unscrambler, Version 10.2, Camo Software AS,
Oslo, Norway). The reflectance spectra (R) collected from the 3 Vis-NIR
spectrophotometers were transformed into absorbance i.e. log10 (1/R).
Three scans obtained for each sample using the NIRscan Nano were
averaged into a single absorbance spectrum. Thus, one spectrum per

sample per instrument was obtained. The wavelength range of
900–1700 nm was chosen in order to have the same spectral range for
all the four NIR instruments. Transformed data were pre-processed by
applying multiplicative scattering correction (MSC). Pre-processed data
obtained were analyzed and modelled using partial least squares (PLS)
regression for predicting IMF. The number of latent variables (LV) for
PLS models were chosen using cross-validation strategy in a random
mode. Data were analyzed for two studies: (a) evaluating the effect of
sample temperature conditions (non-equilibrated and equilibrated) and
(b) evaluating the performance of NIRscan Nano for IMF prediction in
comparison to the three Vis-NIR spectrophotometers. The Variable
Importance in Projection (VIP) scores were also calculated for NIRscan
Nano PLS regression model in order to determine the important spectral
features (relevant peak related to IMF) captured by the device
(Oussama, Elabadi, Platikanov, Kzaiber, & Tauler, 2012; Wold,
Johansson, & Cocchi, 1993).

For Study (a) each instrument was used to obtain spectral data from
both equilibrated and non-equilibrated samples, but only spectra from
the LabSpec5000 and NIRscan Nano were studied. Two sample sets
were selected. Set 1: 66 equilibrated samples for Labspec5000 and 61
samples for NIRscan Nano were used to develop the calibration model
for IMF prediction. Set 2: 43 samples for Labspec5000 and 42 samples
for NIRscan Nano were scanned in both non-equilibrated and equili-
brated states, thus obtaining 43 and 42 spectra respectively in both
states. These were then used as independent validation sets to assess the
performance of models fitted with samples from Set 1 to predict either
samples on the non-equilibrated and equilibrated states.

For study (b), the two sample sets in Study (a) were combined and
data from the LabSpec4 and Trek added to comprise the calibration set
in Study (b). As some of the samples were scanned more than once
either non- equilibrated or equilibrated there was in total 152 spectra.
Thus, the final numbers of spectra were: 152 measurements for ASD
spectrophotometers; and 145 measurements for the NIRscan Nano
(some outliers were removed based on abnormal spectral behavior).
These spectra were used for developing the calibration models for IMF
prediction. These models were then applied in a set of samples reserved
for validation, which were a mix of old (previously prepared) and re-
cent freeze-dried samples, for Labspec5000, Labspec4, Trek and
NIRscan Nano, respectively. It should be noted that spectra from this
independent validation set (500 samples) were collected after the
samples used to fit the models were collected. This was to represent
normal practice of applying the developed model on new independent
samples chronologically separated from calibration dataset. Both cali-
bration and validation data sets had a wide range of fat content. The
SECV for NIRScan Nano was compared to those obtained with the other
instruments using F test (ASTM International, 2015). Briefly, the ratio
between the SECV for NIRScan and SECV for the instrument of interest

Table 3
Comparison of spectrophotometers for prediction of IMF% in temperature equilibrated freeze dried ground lamb samples.

Instrument Cross-validation Prediction

No. of measurements LV RMSEC Rc2 RMSECV Rcv2 No. of measurements RMSEP Rp2

LabSpec5000 152 6 0.35 0.90 0.38 0.88 498 0.41 0.76
LabSpec4 152 9 0.31 0.92 0.36 0.89 499 0.38 0.79
Trek 152 8 0.36 0.89 0.40 0.86 497 0.34 0.83
NIRscan Nano 145 6 0.35 0.89 0.38 0.88 485 1.28 0.27

Note:
LV: Latent Variables.
RMSEC: Root Mean Squared Error of Calibration.
RMSECV: Root Mean Squared Error of Cross-Validation.
Rcv2: Coefficient of determination in cross-validation.
RMSEP: Root Mean Squared Error of Prediction.
Rp2: Coefficient of determination in prediction.
IMF: Intramuscular fat.

Table 4
F test for model comparison: NIRScan Nano vs other Vis-NIR spectro-
photometers.

Instrument df SECV F F critical

Labspec5000 145 0.40 1.10 1.32
Labspec4 142 0.36 1.11 1.32
Trek 143 0.40 1.10 1.32
NIRScan Nano 138 0.38

Note:
Degrees of freedom (df) = n-LV-1, n = no of samples/ measurements,
LV = Latent Variables.
SECV: Standard Error of Cross-validation.
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was estimated and compared with the F-table for the corresponding
number of degrees of freedom (df). The df was estimated as ‘n-LV-1’,
where n is the number of samples, LV is the number of latent variables
used in the model to estimate SECV. The ratio was taken as the larger
value divided be the smaller value of SECV (ASTM International, 2015).

Two additional analyses were performed to evaluate the perfor-
mance of NIRscan Nano. The first involved applying the fitted model on
individual spectra from the NIRscan Nano to evaluate the effect of
sample heterogeneity on prediction variability. The second evaluation
involved fitting a model for all spectra (n = 630; 145 + 485) to test
whether the variation between different days of scanning could be
modelled. In this case, repeated double cross validation (RDCV) was
used to fit PLS regression models to assess the relationship between IMF
and the spectral attributes (Filzmoser, Liebmann, & Varmuza, 2009;
Szymańska, Saccenti, Smilde, & Westerhuis, 2012; Westerhuis, van
Velzen, Hoefsloot, & Smilde, 2010). In RDCV, the whole procedure was
repeated ten times and the average of ten predictions for each sample is
used as final prediction. For each sample there were three predictions.

2.3.2. Data analysis: fresh lamb samples
The reflectance spectra (R) collected from the Labspec5000 were

transformed into absorbance i.e. log10 (1/R) in order to have the data
similar to the NIRscan Nano. Transformed data were pre-processed by
applying MSC and subjected to principal component analysis (PCA) for
differentiating samples based on the animal age.

3. Results and discussion

3.1. IMF results

IMF content for all the original fresh meat samples (n = 609) were
obtained in the range of 1.2–6.79% on wet basis. The average and
standard deviation of the IMF% values were 3.10 and ± 0.85% on wet
basis, respectively. IMF% in wet meat sample was used to fit the
models.

3.2. Visual spectral analysis

Fig. 1a illustrates the pre-processed spectra obtained for freeze dried
ground lamb meat samples in both non-equilibrated and equilibrated
state using the NIRscan Nano while Fig. 1b illustrates the similar
spectra using Labspec5000. It can be observed that the condition of the
freeze-dried meat samples did not significantly affect the spectral in-
formation from NIRscan Nano, however resulted in small variation in
the spectra from Labspec5000. Thus, the time required to equilibrate
samples could be eliminated for NIRscan Nano. Fig. 1c illustrates the
pre-processed spectra obtained by averaging the individual spectrum of
each equilibrated sample (without outliers) using all the four spectro-
photometers in the wavelength range of 900–1700 nm. The NIRscan
Nano generated similar spectral features in comparison to other spec-
trophotometers in the region 1160–1238 nm and 1380–1490 nm. The
absorption band at 1215 nm related to the second overtone of CeH
stretching vibration is associated with intramuscular fat (Dixit et al.,
2016a; Dixit et al., 2016b; ElMasry, Sun, & Allen, 2013). Although a
low signal-to-noise ratio (SNR) was observed for the spectra obtained
from the NIRscan Nano which could be related to the smaller scanned

Fig. 5. Prediction plots; (a) Labspec5000, (b) Labspec4, (c) Trek and (d) NIRscan Nano.
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area in the sample. However, the spectra showed relevant spectral
features, especially the IMF related peak at 1215 nm.

3.3. Multivariate data analysis

3.3.1. Freeze dried ground lamb samples
PLS regression was performed on pre-processed spectral data for all

the spectrophotometers in order to develop predictive models for IMF.
Data were analyzed for two studies: (a) evaluating the effect of sample
temperature conditions (non-equilibrated and equilibrated) (b) evalu-
ating the performance of the NIRscan Nano for IMF prediction in
comparison to 3 other Vis-NIR spectrophotometers.

3.3.1.1. Study (a): evaluating the effect of sample temperature conditions
(non-equilibrated and equilibrated). Table 2 shows the performance
summary of PLS regression models for IMF prediction obtained using
data from the Labspec5000 and the NIRscan Nano for non-equilibrated
and equilibrated samples. It presents the root mean squared error and
coefficient of determination for calibration (RMSEC;Rc2); cross
validation (RMSECV;Rcv2); and for prediction (RMSEP;RP2); along
with the number of latent variables (LVs) used. Two validation sets
were used, one with non-equilibrated samples and the other with
equilibrated samples. The PLS regression model for NIRscan Nano
showed good fit, indicated by a high Rcv2 (0.85) and a low RMSECV
(0.47); moreover, the model showed good fit in comparison to
Labspec5000 which yielded slightly higher Rcv2 (0.89) and lower
RMSECV (0.40) (Table 2). The PLS regression model for NIRscan

Nano showed good prediction ability for both non-equilibrated and
equilibrated samples as indicated by Rp2 as 0.83 and 0.82, respectively.
The PLS regression model for the Labspec5000 also showed good
predictions, achieving Rp2 of 0.75 for non-equilibrated and 0.83 for
equilibrated samples. Furthermore, the RMSEP values for NIRscan
Nano and Labspec5000 instruments were in the ranges of 0.38–0.39
and 1.12–1.49% in the validation dataset, respectively. The RMSEP
values for NIRscan Nano were similar as reported in previous studies by
Pullanagari, Yule, and Agnew (2015), Craigie et al. (2017) and
Andersen, Wold, Gjerlaug-Enger, & Veiseth-Kent, 2018. However, the
reason behind higher values of RMSEP for Labspec5000 is not clear.
Fig. 2 presents the prediction plots for non-equilibrated and
equilibrated samples using both spectrophotometers. Both non-
equilibrated and equilibrated samples showed similar distribution
along the regression lines using either spectrophotometer. In the
prediction plot for equilibrated samples (Fig. 2a) using the
Labspec5000, data points were more clustered along the regression
line, resulting in the high Rp2. Fig. 2a also shows that the regression line
is over the reference line (dashed line) showing an overestimation of
predicted values. Whereas prediction plot for both non-equilibrated and
equilibrated samples using NIRscan Nano showed very similar
regression plots as justified by Rp2 (Fig. 2c and d). Overall, it can be
concluded that sample equilibration is not a crucial step for NIR
scanning with respect to freeze dried lamb meat samples.

3.3.1.2. Study (b): comparing the performance of miniaturized
spectrophotometer for IMF prediction to three Vis-NIR

Fig. 6. Prediction plots: (a) Samples analyzed at different days using the original calibration model and (b) Samples analyzed at different days validated with
corresponding calibration model. Error bars denote standard errors.
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spectrophotometers. Fig. 3 shows the PLS regression coefficients plots for
the Labspec5000, Labspec4, Trek and NIRscan Nano. Regression
coefficients plot of the NIRscan Nano showed similar features to all
ASD spectrophotometers especially Labspec5000 (Fig. 3). These
observations were expected since NIRscan Nano and the LabSpec5000
models utilized the same number of latent variables i.e. 6, while the
LabSpec4 and the Trek models utilized 9 and 8 LVs, respectively. The
PLS regression models for these two sets might differ slightly on the
information captured in the model. The NIRscan Nano and the
LabSpec5000 models were dominated by the fat absorption region
around 1215 nm. Also, Fig. 4 shows the VIP scores plot for NIRscan
Nano PLS regression model where the highest score is observed at
1215 nm and thus confirms the ability of the instrument to capture the
peak relevant to IMF.

Table 3 shows the performance summary of 4 PLSR models for
predicting IMF in equilibrated freeze-dried ground lamb meat samples
obtained using data from 3 Vis-NIR spectrophotometers and the
NIRscan Nano. All the four calibration models showed good fit as in-
dicated by high Rcv2 in the range of 0.86–0.89 and low RMSEC as well
as RMSECV in the range of 0.31–0.40. The goodness of fit for the
models decreased in the following order: LabSpec4, NIRscan Nano/
LabSpec5000 and Trek. A standard F-test was conducted using SECV
values of PLSR models in order to compare the performance of NIRscan
Nano to the three Vis-NIR spectrophotometers (ASTM International,
2015). Table 4 shows that the F values obtained for all 3 comparisons
were less than their corresponding F-critical values at a 95% confidence
level which verifies that the SECV for NIRscan Nano was not sig-
nificantly greater than the SECV values of other spectrophotometers.
Thus, based on the available data there is no evidence that the per-
formance of NIRscan Nano is inferior to the other devices.

Good prediction ability was observed for the three Vis-NIR spec-
trophotometers as indicated by high Rp2 in the range of 0.76–0.83 and
low RMSEP in the range of 0.34–0.41. The instrument of interest i.e.

NIRscan Nano showed poor predictions as indicated by low Rp2 and
RMSEP values (Table 3). The RMSEP value of NIRscan Nano (1.28) was
just over three times larger than the RMSEP of the LabSpec5000 (0.41).
This suggests that there is variation in spectral data from new (vali-
dation) samples compared to the calibration data set. Fig. 5 shows the
prediction plots for IMF using all spectrophotometers. It can be ob-
served from Fig. 5a, b and c that the data points were more clustered
along the regression line, which is reflected in the high Rp2 for these
instruments.

However, Fig. 5d shows that the data points in the predictions plot
for NIRscan Nano deviate from the expected trend, indicated by the
reference line in the plot, and the samples seem to be divided in two
groups. Fig. 6a shows the scatter plot corresponding to Fig. 5d but split
according to the day of scanning and with prediction for individual
spectrum. It shows that variation among individual spectrum on the
same sample (size of the error bars) is relatively small compared to the
range of IMF investigated. It suggests that there is a small effect of
sample heterogeneity contributing to poor prediction performance.
Fig. 6a also shows that predictions follow the expected trend but there
is a significant bias on particular days. The bias can be observed in the
prediction plot for samples analyzed on day 1 and day 2. Similarly, bias
can be observed for some samples analyzed on day 6, 7 and 9. The
presence of this bias explains the drop off in performance of NIRscan
Nano when comparing the Rcv2value (0.88) to the Rp2 (0.27). This type
of bias was not observed in other instruments (Fig. 5a-c) suggesting that
variation showed in Fig. 6a is not associated to day-to-day variation in
the samples. Furthermore, the same procedure for sample processing
and operator were involved in the sample scanning. Thus, it can be
suggested that the bias observed in Fig. 6a is due to instrumental var-
iation. However, it is not clear what is the exact source of this variation.
The spectra corresponding to these ten days (Fig. 6a) were used in the
repeated double cross validation. Fig. 6b shows the prediction plots for
the new calibration models where the bias was eliminated in all the

Fig. 7. PCA plots distinguishing early (4 months old) and late (12 months old) lambs; (a) PCA score plot: Labspec5000, (b) PCA score plot: NIRscan Nano and (c) PC
Loadings plot (PC2: Labspec 5000, PC3: NIRscan Nano).
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plots. These results show that the effects of day-to-day variation can be
accommodated, and that this type of variation should be taken in to
consideration when developing calibration for NIRscan Nano.

3.3.2. Fresh lamb samples
Fig. 7a and b shows the PCA score plots generated from the spectral

data obtained for fresh lamb meat samples using the Labspec5000 and
the NIRscan Nano, respectively. It can be observed that samples were
separated among themselves based on the age of lambs. PC2 from the
Labspec5000 and PC3 from the NIRscan Nano were the main con-
tributors to the separation of lamb samples based on their age. Fig. 7c
illustrates the loadings plot for PC 2 and PC 3 from the Labspec5000
and NIRscan Nano, respectively. Both loadings show similar features
which includes an absorption peak at 1215 related to fat content. The
loading also includes a peak comprised of two very weak bands related
to fat at 1392 and 1414 nm which are dominated by water content of
the samples (peak at 1140 nm). A second water peak could also be
observed at 970 nm. Peaks related to water content had the greatest
contribution to the loading values because water is the main compo-
sitional component of fresh meat samples (ElMasry et al., 2013).

4. Conclusion

It was observed that variation in the time for temperature equili-
bration of the samples did not affect the prediction performance of
models for IMF% in the freeze dried powder.

The PLS regression calibration models obtained for IMF in freeze
dried samples using the LabSpec5000, the LabSpec4 and the Trek
showed good fit. However poor prediction in the validation set of
NIRscan Nano was observed, and it was found that bias was associated
with the data for particular days. The observed bias is thought to be
largely related to instrumental variations. It was observed that re-
presenting the day-to-day variation in the calibration model drastically
improved the prediction ability of the NIRScan Nano, i.e. the design of
the calibration model should take in consideration instrumental varia-
tion involving samples measured over several days.

Both the Labspec5000 and the NIRscan Nano could be used to dif-
ferentiate fresh lamb meat according to the animal age by exploiting
the compositional difference between early and late-season lambs.
NIRscan Nano instrument has the potential to be a fast, ultra-compact
and cost-effective NIR spectrophotometer for predicting IMF in freeze
dried ground lamb meat. Also, the NIRscan Nano could be a potential
alternative to other benchtop and hand-held spectrophotometers for
rapid and real-time classification of fresh lamb meat.
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