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ARTICLE INFO ABSTRACT

Keywords: Over the last decade, the growth of the global pharmaceutical market has led to an overall increase of sub-
Falsification standard and falsified drugs especially on the African market (or emerging countries). Recently, several methods
Handheld

using handheld/portable vibrational spectroscopy have been developed for rapid and on-field drug analysis. The
objective of this work was to evaluate the performances of various NIR and Raman handheld spectrophotometers
in specific brand identification of medicines through their primary packaging. Three groups of drug samples
(artemether-lumefantrine, paracetamol and ibuprofen) were used in tablet or capsule forms. In order to perform
a critical comparison, the analytical performances of the two analytical systems were compared statistically
using three methods: hierarchical clustering algorithm (HCA), data-driven soft independent modelling of class
analogy (DD-SIMCA) and hit quality index (HQI). The overall results show good detection abilities for NIR
systems compared to Raman systems based on Matthews's correlation coefficients, generally close to one. Raman
systems are less sensitive to the physical state of the samples than the NIR systems, it also suffers of the auto-
fluorescence phenomenon and the signal of highly dosed active pharmaceutical ingredient (e.g. paracetamol or
lumefantrine) may mask the signal of low-dosed and weaker Raman active compounds (e.g. artemether). Hence,
Raman systems are less effective for specific product identification purposes but are interesting in the context of
falsification because they allow a visual interpretation of the spectral signature (presence or absence of API).

Near infrared spectroscopy
Raman spectroscopy
DD-SIMCA

1. Introduction

The significant growth of the pharmaceutical market in emerging
countries has led to the emergence of numerous falsifications [1].
Quality promoting programs and research activities has followed this
growth but not proportionally [2-4]. Over the past two decades, the
United States Agency for International Development (USAID) and
United States Pharmacopoeia (USP), based on three cooperation pro-
grams, contributed significantly to the improvement of the quality
control and quality assurance systems in developing countries [5,6].
These programs involved conducting various training sessions on good
manufacturing practices (GMP), registration procedures and drug
testing methods to ensure the effectiveness, quality and safety of
medicines [6]. The World Health Organization (WHO) estimates that at
least 10% of drugs are falsified or substandard medicines (SF) in low

and middle income countries (LMIC) [7-9]. Many efforts are needed to
tackle this problematic in the economic, politic and scientific fields.

Detection of poor quality drugs is a major scientific challenge linked
to SF medicines. Due to the complexity of situations (absence/wrong
active ingredient, wrong amount of active ingredient, too high amount
of impurities, bad dissolution profiles, etc.) no single device can actu-
ally detect all SF medicines. Several analytical field techniques exist to
detect SF drugs and each has its own specificities [10].

Among these techniques, near infrared (NIR) spectroscopy and
Raman spectroscopy are more and more used because of their fast,
simple and non-destructive features [11-16]. Recently, special atten-
tion is focusing on handheld NIR and Raman devices. Indeed, in addi-
tion to their miniaturization, these devices may embed intelligent de-
cision-making algorithms and on-board spectral libraries. Clearly, they
may offer important advantages over conventional analytical chemistry
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methods in the detection of SF drugs throughout the supply chain be-
cause they allow the development and in-situ implementation of several
analytical methods [17,18]. These advantages, however depend on
their analytical performances (sensitivity and specificity), their cost,
and their ability to perform real-time field analyses [19]. Currently,
there is a wide variety of handheld spectrophotometers based on vi-
brational spectroscopy. Nonetheless, their analytical performances in
medicine verification issues, compared to benchtop spectro-
photometers, remain to be proven. These performances depend not only
on the technical features and configurations of the instruments, but also
on the accuracy of the spectral data analysis techniques used, among
others.

NIR and Raman spectra of pharmaceuticals contain information on
both the physical and chemical properties of the sample, which is
convolved with extraneous information such as instrument noise,
measurement errors, and other interfering signals such as sample auto-
fluorescence or scattering [20,21]. Because of these, spectral data re-
quire specific preprocessing and decision-making methods to extract
the meaningful pieces of information and to take decisions.

In the context of drug product verification three families of che-
mometric methods are commonly used: spectral correlation methods
(e.g. hit quality index referred to as HQI), class modelling methods (e.g.
the soft-independent modelling of class analogy referred to as SIMCA)
and classification methods (e.g. Partial Least Squares Discriminant
Analysis referred to as PLS-DA).

Spectral correlation algorithms are the simplest identification al-
gorithms and are the most frequently embedded in handheld systems.
They compute similarity indexes between the analyzed (unknown)
spectrum and a reference library [22]. One of these methods is the so-
called “Hit Quality Index” (HQI) which is usually computed as the
squared Pearson's correlation coefficient between two spectra [23].

Class modelling or one-class classification (OCC) techniques involve
the statistical characterization of a target drug based on calibration
spectra and then testing whether new spectra are compatible with the
estimated characteristics or not. Soft independent modelling of class
analogy (SIMCA) is one of the most used OCC techniques. SIMCA
method performs principal component analysis (PCA) on the spectra of
the target drug and computes scores for each spectrum on significant
principal components [24].

The partial least squares discriminant analysis (PLS-DA) is the most
commonly used discrimination/classification algorithm in specific
brand identification problems [25,26]. This method uses the principle
of PLS regression for a classification purpose, with output values of the
PLS model that are categorical (coded labels of the classes to be mod-
elled). The calibrated PLS model can then be used to predict the
membership or authenticity of new samples [27,28]. PLS-DA allows the
manipulation of highly collinear and noisy data but also the identifi-
cation of the most important variables [29]. However, the SIMCA
model is more rigorous as a specific brand identification method than
PLS-DA. Indeed, PLS-DA requires a “non-target” samples to be mod-
elled. However, to be efficient with new unknown sample spectra, this
“non-target” class should cover as much variability as possible that
could be encountered in the future. This may therefore constitute a
limitation for the PLS-DA model construction. For a more detailed
comparison of SIMCA and PLS-DA for specific brand identification
purposes, the reader is referred to Ref. [26].

The present study aims at evaluating the performances of various NIR
and Raman handheld spectrophotometers in specific brand identification
of medicines through their primary packaging. Two different chemo-
metric methods were envisaged, namely the HQI and the SIMCA. The
HQI was chosen because of its simplicity. It is embedded in almost every
handheld systems and is widely used. In the framework of product
identification, class-modelling techniques (e.g. SIMCA) are generally
more relevant because they model only the target class whereas classi-
fication algorithms (e.g. PLS-DA) require not only the target class but
also at least one non-target class (for a one vs rest strategy) [26,30,31].
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Beside identification algorithms, clustering methods are also widely
used to group samples without a priori knowledge. Hierarchical ag-
glomerative clustering (HCA) methods are specific clustering techni-
ques widely used in chemometrics. Starting with clusters of a single
spectrum or point, the algorithm proceeds at each step by merging pairs
of clusters using a (dis)similarity metric (distance of observations re-
lative to each other) and a linkage criterion (the distance of clusters
relative to each other), until all spectra are clustered. Unlike the
k-means algorithm which clusters spectra in way that each spectrum
belongs to the cluster with the nearest mean, HCA does not require any
prior specification of the number of clusters [32-35]. During this study,
HCA was performed to compare the information provided by each
spectrophotometric technique.

2. Material and methods
2.1. NIR and Raman instrumentation
The instruments selected and evaluated in the study included:

i. Two NIR systems: a Fourier transform (FT) benchtop (FT-NIR Multi
Purpose Analyzer MPA, Bruker Optics, Germany) and a low-cost
handheld dispersive spectrophotometer (NIR-S-G1, Tellspec,
Canada);

. Two handheld Raman device systems: a FDA 21CFR part 11 quali-
fied (TruScan RM, Thermo Scientific, USA) and a middle-cost device
(IDRaman mini, Ocean Optics, USA).

These instruments are representative of what may be found on the
market in terms of technology and performances (spectral resolution,
laser power and price). In addition, the 785 nm laser wavelength is the
most used configuration for pharmaceutical analyses purposes. The
instrumental characteristics of these systems are summarized in
Table 1.

The NIR spectra based on MPA were acquired using a probe for
solids with 32 scans and a spectral resolution of 8 cm~'. The internal
Te-InGaAs detector was used in the 12500-4000 cm ™! spectral range.
Acquisition parameters of the handheld devices were set to default. The
ID-Raman mini was used in the orbital raster scanning (ORS) mode and
no baseline correction was performed. Each device was piloted using its
built-in software.

2.2. Drug samples

The drug samples included solid dosage forms (tablets or capsules)
of paracetamol, ibuprofen and artemether-lumefantrine as described in
Table 2.

These three categories of drugs represent three challenging situa-
tions for handheld vibrational spectroscopy:

i. Paracetamol and paracetamol combinations formulations samples
(denoted “P”) were selected firstly because of the high dosage of
paracetamol and its high Raman scattering property, and secondly
because of its possible combinations with a large variety of low-
dosage APIs. The objective is to evaluate whether handheld systems
are able to detect small but major formulation changes such as the
presence or absence of other low-dosage APIs in the presence of a
potentially masking compound.

Ibuprofen-based formulations samples (denoted “I”) were selected
because of the wide variety of colors and pharmaceutical forms.
These parameters can influence the NIR or Raman spectra (auto-
fluorescence of colored coating, soft capsules ...).
Artemether-lumefantrine formulations samples (denoted “AL”) re-
present one of the most falsified class of antimalarial drugs in de-
veloping countries. It was therefore interesting to test whether the
various instruments and chemometric methods can effectively

ii.

iii.
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g discriminate different brands of this formulation. Indeed, lumefan-
T lgs<on trine is a high Raman scatterer and can potentially mask the signal
'é TTeY from artemether and excipients, making it difficult to differentiate
between different brands.

]

Tl & One formulation of each category was selected as “genuine” sample
% ’§ A and hence considered as target class to be modelled: Dafalgan Forte 1 g
E|2cscs (paracetamol, “G-P” in Table 2), Ibuprofen EG 400 mg (ibuprofen, “G-1”

in Table 2) and Coartem 20/120 (artemether/luméfantrine, “G-AL” in
Table 2). Six different batches of each formulation were acquired in
local pharmacies. Three batches were used as training set to build the
SIMCA models and to build the reference spectrum (for the HQI ana-
lyses) and the three remaining batches were used as test set to evaluate
the model performances.

The other formulations (both branded and generic drugs) were used
to mimic high quality fake medicines. Additionally, five falsified bat-
ches of artemether-lumefantrine formulations containing none of the
declared API were also analyzed (denoted “F”).

spectral resolution (cml™1) °

N/A
N/A
13.3
28.9

< All samples were obtained from local pharmacies in Belgium
s (paracetamol; paracetamol combinations and ibuprofen samples) and in
i’ Democratic Republic of Congo (artemether-lumefantrine samples).
S Artemether-lumefantrine samples were analyzed by HPLC to confirm
5 . . -
S that all samples were conform in terms of identity of declared API and
£ their amount.
AR
o n N~ —

2.3. Data acquisition and processing algorithms
g
g 2.3.1. Data acquisition and preprocessing
g § e § § Samples of tablets and capsules were directly scanned through their
=1 NN AN~

blister. The spectra of twenty tablets were recorded for each “genuine”
formulation while the spectra of ten tablets were recorded for each of
the other formulations. Overall, 60 spectra were used as training set (20
spectra for each of the three “genuine” batches) and 1770 spectra
(composed of the three remaining “genuine” batches and all other
analyzed samples) were used as test set.

To improve the signal-to-noise ratio, the measured spectra have

spectral range analyzed (cm ™)

= § o been preprocessed. First, Savitzky-Golay (SG) smoothing and differ-
i j § § entiation filter (second-degree polynomial and first derivative) was
g = SI 8‘ applied to remove noise and baseline signals. Second, either unit-area
oA normalization or Standard Normal Variate (SNV) were applied to the
g smoothed and differentiated signals [36].
—~ — =
) o 15}
2 s) a
g 2 g 2.3.2. Hierarchical clustering method
% - z z | = As mentioned in Section 1, agglomerative hierarchical clustering
= 3 3 § % ° starts with single-element clusters. The algorithm then proceeds at
o v 2 9] . .. . .
S| g %‘ E = t each step by merging the two most similar clusters into a new bigger
= cluster. This procedure is iterated until all spectra are grouped into
s | & one single big cluster [37]. In this study, the L;- norm or Manhattan
f £ B distance was used to measure the similarity between pairs of spectra
sl a 0 o .
£l oz -é g% 2 |3 % while the Ward's method was used to group the two closest clusters at
g g © E ) 7§ Tg each step. The objective function to be minimized is the variance-
% g % z § § ;05) & weighted distance between cluster centers. It has been demonstrated
o
S| =] EES . g that L; — norm (and hence the least absolute error) are more ap-
*;8) E o propriate than the L, — norm (and the sum of squared errors) in high
§ é: g 2 dimensional data analysis [38,39]. The advantage of this method is
= % g E that it takes into account not only the distance between the clusters
w
E|l g - EE | T 2 but also the intra-cluster distance [39]. Hierarchical clustering
_"é i3 = § 5 22 would allow observing the significant differences between the spec-
<
g| 5 - § E \E % 2 trophotometers by focusing much more on the categorization of the
%d _§ Zg8¢g | v £ samples according to their physical and chemical properties. This
S| = ESE& % E justified the choice of paracetamol formulations as sample sets for
8 T this method.
Bl ¢ R
g E <m | & &
~ § % <m55 | EE 2.3.3. Hit quality index (HQI) method
= 5 g g ; E g ;’ f The HQI was used to analyze the spectral correlation between the
&3 “genuine” spectra and the other spectra for NIR and Raman data sets
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Table 2

Description of analyzed samples.
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Code Active Pharmaceutical Ingredient Brand Name Dosage (mg) Galenic forms Test Batches
G-AL lumefantrine/artemether Coartem 120/20 Tablets 3
G-P paracetamol Dafalgan Forte 1000 Tablets 3
G-1 ibuprofen Ibuprofen EG 400 Tablets 3
P1 paracetamol Algostase Mono 1000 tablets 1
P2 paracetamol Dafalgan 500 tablets 4
P3 paracetamol Dafalgan Forte 1000 coated tablets 4
P4 paracetamol Panadol 500 tablets 2
PS5 paracetamol Panadol retard 665 modlgzcllertzlease 4
P6 paracetamol Paracétamol EG 1000 coated tablets 4
P7 paracetamol Paracétamol EG 500 coated tablets 4
P8 paracetamol Paracetamol Mylan 500 tablets 1
P9 paracetamol Paracetamol Tech EMI 500 tablets 1
P10 paracetamol Paracetamol Teva 500 tablets 3
P11 paracetamol Paracetamol Teva 1000 tablets 11
P12 paracetamol Perdolan 500 tablets 4
P13 paracetamol/acetylsalicylic acid/cafeine Excedryn 250/250/65 coated tablets 4
P14 paracetamol/cafeine Panadol plus 500/65 coated tablets 3
P15 Rhinofebryl 240/3.2 hard capsules 1
P16 paracetamol/codeine Dafalgan codeine 500/30 coated tablets 1
P17 paracetamol/dextropropoxyphene Algophene SMB 30/400 hard capsules 1
P18 paracetamol/pseudoephedrine Sinutab 500/30 tablets 1
P19 paracetamol/pseudoephedrine Sinutab forte 500/60 tablets 1
P20 Algotra 37.5/325 coated tablets 1
P21 tramadol/paracetamol EG 37.5/326 coated tablets 2
P22 tramadol/paracetamol Teva 37.5/327 tablets 4
P23 Zaldiar 37.5/328 tablets 1
11 ibuprofen Ibucaps 400 soft capsules 2
12 ibuprofen Brufen Forte 600 coated tablets 2
13 ibuprofen Brufen Retard 800 modltf;zcllertzlease 2
14 ibuprofen Ibuprofen EG 200 coated tablets 1
15 ibuprofen Ibuprofen EG 400 coated tablets 2
16 ibuprofen Ibuprofen EG 600 coated tablets 8
17 ibuprofen Ibuprofen EG 800 coated tablets 1
18 ibuprofen Ibuprofen sandoz 400 coated tablets 1
19 ibuprofen Ibuprofen TEVA 200 coated tablets 1
110 ibuprofen Ibuprofen TEVA 400 coated tablets 1
111 ibuprofen Ibuprofen TEVA 600 coated tablets 1
112 ibuprofen Nurofen 200 coated tablets 5
113 ibuprofen Nurofen 400 coated tablets 4
114 ibuprofen Nurofen Fastcaps 400 soft capsules 5

(continued on next page)
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Table 2 (continued)
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ALl lumefantrine/artemether
AL2 lumefantrine/artemether
AL3 lumefantrine/artemether
AL4 lumefantrine/artemether
ALS lumefantrine/artemether
AL6 lumefantrine/artemether
AL7 lumefantrine/artemether
AL8 lumefantrine/artemether
AL9 lumefantrine/artemether
AL10 lumefantrine/artemether
ALI11 lumefantrine/artemether
ALI12 lumefantrine/artemether
AL13 lumefantrine/artemether
AL14 lumefantrine/artemether
ALILS lumefantrine/artemether
ALl6 lumefantrine/artemether
F1 falsified
F2 falsified

Artefan 20/120 tablets 7
Cartef DS 480/80 tablets 1
Cether-L 480/80 tablets 1

Coartem 120/20 tablets
Coartem D 120/20 dispersible tablets 4
Co-Artluf 120/20 tablets

Co-Rimétar 480/80 tablets 2
L-Artem 120/20 tablets 3
L-Artem forte 480/80 tablets 2
Lonart DS 480/80 tablets 1
Lonart forte 240/40 tablets 1
Lufamet forte 240/40 tablets 1
Lumart-E 120/20 dispersible tablets 1
Lumartem 120/20 tablets 15
Mefanther DS 480/80 tablets 1
Mefanther Forte 240/40 tablets 1

Coartem 120/20 tablets 3

Combiart 120/20 tablets 2

The paracetamol combination sample colors correspond to colors used in Figure 3

respectively. The HQI was calculated with the following formula
[22,40]:

HQI = (Reference-Unknown)? % 100

- (Reference-Reference)(Unknown-Unknown)

@

where Reference indicates the reference spectrum (the median of the 60
spectra of the training set for the “genuine” formulation), Unknown
indicates an individual spectrum of an alternative product under study,
and the dot symbolizes the scalar product of the two spectral vectors.
The HQI with a value of 100 indicates that the unknown spectrum is
identical to the reference spectrum and a value close to zero indicates
the dissimilarity with the reference spectrum.

2.3.4. SIMCA method (DD-SIMCA)

As mentioned in Section 1, class modelling, especially the SIMCA
model, is more recommended for the verification of the identity of the
products [41]. There are numerous approaches to build a SIMCA model.
In this study, the data-driven SIMCA (DD-SIMCA) has been used. Like
any SIMCA model, the DD-SIMCA first performs a PCA on the calibra-
tion spectra of the target class and computes a score distance (SD) and
an orthogonal distance for each spectrum based on significant PC di-
mensions. These distances are used to determine a critical distance, at a
given confidence level used as boundary or acceptance area for iden-
tification [20,42,43].

Unlike classical SIMCA models however, each type of distance is
modelled using a scaled chi-squared y? distribution (rather than Fisher
F or Hotelling T?) whose degree of freedom are estimated with the
data. Then the two scaled chi-squared distributions are used to define
an acceptance area for a given type I error, a, or level of confidence
1 — a. This acceptance area was used for classification of new dataset
(test sample). All DD-SIMCA models were auto scaled. The number of
PCs mainly influences the quality of the classification and determines
the complexity of the model [44]. The model parameters (number of
PC's and o) were optimized in a sequential way.

2.4. Evaluation of performances of the HQI and the DD-SIMCA

The HQI and the DD-SIMCA methods were evaluated for their brand
identification performances. Several criteria are used to evaluate the
performance of binary classifiers, including the sensitivity, the specifi-
city, the accuracy, the Fl-score and the Matthews correlation coeffi-
cient. The Mathews correlation coefficient (MCC) was preferred since it
allows a complete evaluation of the effectiveness of a model, taking into
account all possible classification outcomes [31]. It is calculated as:

TP X TN — FP X FN

MccC
J(TP + FP)(TP + FN)(TN + FP)(IN + FN)

(2)

where TP is the number of true positive, that is the spectra of the target
class that are correctly classified, FN is the number of false negatives,
that is the spectra of the target class that are wrongly classified outside
the target class; FP is the number of false positives, that is the spectra of
non-target classes that are wrongly classified as belonging to the target
class; TN is the number of true negative, that is the spectra of the non-
target classes that are correctly classified outside the target class. The
MCC value can vary between — 1 when all spectra are wrongly classi-
fied and +1, when all spectra are correctly classified. A value of zero
indicates a random assignment of spectra. The main advantage of
Matthews correlation coefficient over accuracy or F1 score is that it
takes into account the class balance ratio and is less affected by un-
balanced classes [45].

The MCC, TP, TN, FP, FN values were computed taking only into
account the test samples related to each “genuine” class of samples (AL,
I and P test samples for G-AL, G-I and G-P models respectively). This
was done to avoid over-optimistic results due to the inclusion of easily
discriminated of formulations with the wrong API.

3. Results and discussion
3.1. Spectral preprocessing

Fig. 1 illustrates the pretreated selected spectral range prior to the
modelling process. The first derivative was chosen to remove baseline
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Fig. 1. (A) NIR-A pre-processed spectra; (B) NIR-B pre-processed spectra; (C) Raman-A pre-processed spectra; (D) Raman-B preprocessed spectra. The preprocessing
of the spectra is the same as presented in Table 3. Green spectra are the median G-AL, blue spectra are the median AL, red spectra are the median I, yellow spectra are
the median P and black spectra are the median C. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this

article.)

artifacts (e.g. auto-fluorescence of samples) or scattering light and to
enhance small spectral features. Normalization was also applied in
order to smooth differences in intensity that are less relevant for qua-
litative purposes.

3.2. Comparison of performance of NIR and Raman systems using HQI

Before applying HQI analysis, the spectra were preprocessed as
mentioned in Table 3. The reference spectrum for each genuine sample
is the median spectrum of the 60 spectra of the training set. An HQI
threshold value of 95% was used for a similarity acceptance decision in
the database. HQI values comprised between 90 and 95% were also
highlighted as warning values demonstrating a high spectral similarity.
Usually, HQI analysis is not performed on NIR data because of the
broad spectral bands potentially leading to confusing results. However,
it was decided to apply exactly the same approach on NIR and Raman
data for a better comparison. Nevertheless, the HQI results obtained
with NIR data were relatively satisfactory compared to Raman results.
Indeed, the MCC of NIR devices is always higher compared to the MCC
obtained for Raman devices (see Table 3).

The calculated HQI values for each spectral dataset are shown in
supplementary Table S.1. The values are reported with their standard
deviation when applicable. HQI appears to be easy to compute and
effective to detect wrong API samples. However, the sensitivity of the
method to small spectral changes due to API combinations or
changes in the medicine composition (different excipients for the
different brands) is not satisfactory. Indeed, the majority of samples
of a same category (P or AL) shows a HQI value above 90% except for
the ibuprofen sample because of the formulation differences (soft
capsules vs tablets, pink vs white coating, ...) that are large enough
to enable a differentiation. Surprisingly, the HQI approach leads to

relatively satisfactory results for the P and I samples with the NIR
devices.

These results of the HQI method confirm that this technique should
only be used as a pre-screening technique to detect major differences
between samples (wrong or absent API). However, it is not suitable to
identify samples having similar formulations.

3.3. Comparison of performance of NIR and Raman systems using DD-
SIMCA

DD-SIMCA models were built on each preprocessed data as de-
scribed in Table 4. Figures of merit of the different models are shown in
Table 4. The acceptance plots for the G-AL models are shown in Fig. 2
and for the G-I and G-P models are presented in supplementary figures
Fig.S1 and Fig.S2, respectively.

As one may observe, the DD-SIMCA models applied on NIR data
allowed a perfect (or almost perfect for G-P model on NIR-B device)
discrimination and specific brand identification in the three cases stu-
died.

Raman-A device has satisfactory results for G-I and G-P models with
MCC higher than 0.9 but unsatisfactory results for G-AL (MCC below
0.5). On the other hand, Raman-B device has mitigated to un-
satisfactory results for both models. These results may be explained by
the better spectral resolution of device Raman-A enabling the detection
of smaller differences.

Although SIMCA is recognized as a powerful discriminant method,
especially for specific brand identification purposes, Raman systems
have a practical difficulty in showing a spectral difference between
different product brands, especially when it contains fluorescent com-
pounds or weak Raman scattering compounds. The results of DD-SIMCA
appear to be similar to those obtained using hierarchical clustering
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Fig. 2. G-AL DD-SIMCA acceptance plots: (A) NIR-A (B) NIR-B (C) Raman-A (D) Raman-B. “G” samples are the reference artemether-lumefantrine samples; “1”
samples are the ibuprofen samples; “P” samples are the paracetamol and paracetamol combination samples; “AL” samples are the artemether-lumefantrine samples
and “F” samples are the falsified samples (for more details the reader is referred to Table 2).

algorithm and HQI method. All these methods show that Raman spec-
troscopy are less sensitive to the physical properties of the samples than
NIR spectroscopy, but are strongly influenced by all the chemical
properties of the samples.

These results demonstrate that for specific product identification
purpose, NIR spectroscopy is more appropriate than Raman spectro-
scopy. Indeed, it is less sensitive to sample color and other irrelevant
information while keeping a good balance of light absorption between
compounds avoiding masking effects of highly dosed API's (e.g. lume-
fantrine or paracetamol).

One of the main drawbacks of NIR spectroscopy is the difficulty of
interpretation of the data. Indeed, the SIMCA model might reject a
sample even if it contains the correct API but its dosage is different or
even its moisture content is different from the calibration set. This leads
to confuse situations on the field and the inference of the rejection by
the model is almost impossible by field inspectors.

Raman spectra are much easier to interpret and interesting in-
formation may be directly obtained on the field (e.g. identification of a
wrong API, etc.). This information may lead to direct actions and risk
evaluation. Furthermore, Raman spectroscopy is less sensitive to
moisture, which may be an advantage in tropical areas since NIR
spectroscopy may be influenced by ambient humidity [46].

In formulations containing paracetamol the amount of excipients is
very low (~10-15% W/W) and the Raman scattering power of para-
cetamol is very high so excipients are almost invisible to Raman de-
vices. This explains that Raman spectrophotometers have poor brand
identification for paracetamol containing samples.

On the other hand, artemether/lumefantrine formulations have
about 40-60% W/W of excipients. This should facilitate the dis-
crimination of different brands based on their Raman spectra. However,
lumefantrine is a very high Raman scatterer and may mask other

compounds such as artemether but also the excipients depending on
their nature (e.g. starch is a weaker Raman scatterer than lactose etc.).
Therefore, it is interesting to see in Fig. 2 that several formulations
(with possibly very different excipients) are not distinguished by
Raman spectroscopy. Unfortunately, it was not possible to obtain the
qualitative composition (nature of the excipients) of all the artemether/
lumefantrine formulations to discuss this point.

Finally, ibuprofen formulations may contain between 20 and 60%
W/W of excipients. Nevertheless, as ibuprofen is a moderate Raman
scatterer and because very different galenics exist (soft capsules, sugar
coated tablets, colorful coatings), it is easier to distinguish them using a
Raman spectrophotometer. However, it is important to notice that the
signal obtained may not always enable the identification of the API (e.g.
for sugar coated tablets (I9 to I13), only the signal from the sugar is
obtained).

3.4. Comparison of performances of NIR and Raman systems using HCA

The dendrograms in Fig. 3 compare the clustering of the various
samples by the various instruments. Each end of the branch represents
a spectrum of a class as described in Table 2. One may observe that the
dendrograms obtained from the NIR systems are almost similar to each
other and much more different to those obtained with Raman systems.
On the one hand, the NIR based dendrograms (Fig. 3A and Fig. 3B)
seem to be largely influenced by both the physical and the chemical
properties of the samples. For example, the upper internal node of the
dendrogram obtained with the NIR-A device (Fig. 3A) represents the
division of the dataset of paracetamol formulations. The red branch
indicates that the outgoing left branch of this node consists of ob-
servations related to samples containing only paracetamol and with
transparent blisters while the right gray node is composed of the
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remaining observations (paracetamol combined with other APIs). This
gray branch is divided in two parts. This division may be explained by
the composition of the blister (opaque or transparent blister). The
branch with the transparent blister then splits according to the solid
state of the samples (capsules or tablets). Finally, the last divisions of
each principal branch are related to the chemical composition of the
samples (paracetamol with others APIs, e.g.: tramadol, aspirin, caf-
feine, chlorphenamine maleate). On the other hand, analyzing the
dendrograms obtained with Raman systems (Fig. 3C and Fig. 3D), it
appears that Raman devices are less sensitive to the physical state of
the samples than the NIR systems, but strongly influenced by the
phenomenon of auto-fluorescence and highly dosed API masking the
signal of lower doses of poor Raman scattering compounds. The
Raman-B device dendrogram shows an upper class (in green) on the
left, characterizing the combined formulation of paracetamol, aspirin
and caffeine; and a lower class (in red) on the right characterized by
the different formulations of paracetamol. In addition, branch tips of
different classes representing paracetamol only formulations are
condensed forming compact blocks suggesting homogeneous ob-
servations. Other samples such as the P9 or some batches of P8 show
high auto-fluorescence levels due to yellow blister (for P9) and cel-
lulose derivatives (for P8).

4. Conclusion

In the framework of falsification and based on this study, it is ob-
vious that there is no ideal vibrational spectrophotometer. The choice
of a system would depend much more on the final objectives of the
analysis. Despite some important limitations (limited number of falsi-
fied medicines, use of different brands of genuine medicines to mimic
high quality falsified medicines, no evaluation of substandard drugs,
absence of verification of the medicines purchased in Belgian phar-
macies), some general lessons may be drawn to help the analyst
choosing the right technology for the right application.

For specific product identification purpose, NIR devices are prefer-
able. Their performances are much more reliable than Raman coun-
terparts are. Furthermore, the low-cost devices offer promising perfor-
mance almost comparable to benchtop systems [47]. The main
drawback at this time is the need for a complementary system (smart-
phone, tablet or computer) to pilot and collect the data. The mobile
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applications are available on most platforms but not suited for phar-
maceutical products identification at this time.

Raman devices are less effective in terms of brand identification and
discrimination but more interesting in the chemical interpretation of
the presence or absence of active pharmaceutical ingredient. This lack
of sensitivity to detect differences in formulation may be an advantage
in the framework of substandard drugs. Indeed, it should be possible to
build a quantitative model for several formulations and detect out of
specification API dosage. Unfortunately, actual default configuration of
devices does not allow the user to set acquisition parameters.

As a conclusion, handheld vibrational spectroscopy devices are
promising tools in the frame of substandard and falsified drugs identi-
fication. However, further work is needed to enable and make available
performant low-cost devices ideally combining NIR and Raman tech-
nologies.
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